はまりやすい確率の勘違い

長尾三郎著『無酸素登頂8000m 14座への挑戦』中に以下の記述あり。

「小西さん、怖くないですか?」

「何が怖いの?」

「毎年八千メートル峰に無酸素でトライするということですよ。」

「そりゃ怖いよ。怖いけど俺は登りたいし、俺の生きる道だから」

「そういうことじゃなくて、確率の問題ですよ。毎年八千メートル峰に行けば、いつか必ず(死に)ハマるんじゃないですかねえ。高所登山の死の確率が一回三%なら、小西さんが十回行ったら三十%の確率で死ぬことになる」

これは、よくやってしまいがちな確率計算の脊髄反射。独立事象の確率を単純に足していくのは意味が無い。

この場合、10回行って死なない確率をベースに考えるとわかりやすい。一回行って死なない確率は97%(97/100)だから、10回連続で死なない確率は(97/100)の10乗である。計算すると約0.74になる。したがって10回行って死ぬ確率は

1-0.74=0.26。26%って本の中に出てきた30%とあまり変わらない気がするが、計算方法はしっかりと理解しておかないといつか足元をすくわれる。(しかし、致死率26%って言えば相当リスキーだな。高所登山は自殺行為なのかもしれない。)

同書によるとメスナーは、34回トライして死んでいないということだが、34回トライして死なない確率は、約36%。つまり、ここまで来ると死ぬ確率のほうが逆転して高くなってしまうのである。メスナーが超人と呼ばれる理由が確率上の数字からも見えてくる。

「ストーリー」の歌詞、ちょっと変えさせてもらいます

大石昌良氏のストーリー(作詞:真戸原直人)という曲が好きで、最近よく口ずさんでいるんだが、どうも気になる歌詞があり、気持ちをこめて歌えないので、困っている。

以下の箇所だ。

僕が君選んで 君が僕選んだ
69億分の一の確率だよって
隣で眠る君にね 伝えようかな?

69億分の1とは世界の人口から一人を無作為に選ぶ確率を指していると思われるが、これだと前半の「僕が君選んで」のほうしか言及できていない。「僕が君選び」かつ「君が僕選ぶ」確率は、(1/69億)*(1/69億)になるはずである。(これも正確に言うと違うんだろうけど)

さらにいうと、69億分の一は、性別関係なく無作為に一人選ぶ前提となっており、ちょっと気持ち悪い。そこで、計算しやすいように男女各35億人いると仮定し、再計算すると、「僕が君選び」かつ「君が僕選ぶ」確率は、(1/35億)*(1/35億)=1/(1.22500 × 1019)である。

平たく言うと、約1200京分の1である。

これですっきりした。これからは、カラオケで堂々と「せんにひゃーけーぶんのいちの」って歌わせてもらいます。

トップ棋士レベルまで来ているボンクラーズに米長永世棋聖の勝ち目はなし

来年1月に米長永世棋聖と対戦するボンクラーズはプロと比べてどのくらいの強さなのか検討してみたい。

1.ボンクラーズのトップアマに対する勝率

まず、ボンクラーズはトップアマに対してどのくらいの対戦成績を持っているのか?

http://blog.livedoor.jp/i2chmeijin/archives/1176009.htmlによると、24での月間成績 11月 (対戦相手のR別) は以下のとおりだ。

sass

トップアマの基準をどうおくかだが、24のレーティングが2900もあればトップレベルと考えてよいだろう。これはざっくりと。サンプル数も十分だろう。

上記の表からR2900以上の人に対する対戦成績は、約87.3%であることが算出できる。

2.トップアマのプロ棋士対戦におけるレーティング

棋士ランキング(http://homepage3.nifty.com/kishi/ranking2.html)より、現時点でのアマチュア(=トップアマとしてよいだろう)のレーティングは、1385であることがわかる。

3.ボンクラーズのプロ棋士中におけるレーティング

レート差に基づく期待勝率とレート増減の早見表 より、レート上位者の勝率が87%となっているところを見てみると、レート差は323~338であることがわかる。

トップアマのレーティングが1385なので、このレート差を加えてみるとボンクラーズのプロ棋士中におけるレーティングは、1708~1723程度であることが推測できる。

4.どのくらいの強さか

この1708~1723というレーティングがどのくらいの強さかというと、現時点でプロトップの17,8位に相当する実力である。現在の名人である森内さんよりもレーティングは高く、感覚的には「めちゃめちゃ強い」レベルと考えて問題ないだろう。

現在レーティングトップの渡辺二冠はR1913なので、その差は175~190である。レート差に基づく期待勝率とレート増減の早見表 より、渡辺二冠に対する期待勝率は75%程度なので、4回やって1回勝てるぐらいの強さは持っているんじゃないだろうか。ちなみに今年の竜王戦では渡辺竜王が丸山九段を4-1で退けて防衛している。

http://ja.wikipedia.org/wiki/Bonanzaによると、「渡辺自身も「10秒将棋[3]だと10回に1、2回はやられる」と告白した[4]。」そうだ。(確か本人のブログにその記述があったように覚えているが、今は見当たらない。)その記事は2005年のものなので、6年もたった今、相当コンピュータの実力は上がっているだろう。

結論:コンピュータ将棋はトップ棋士レベルまで来ている。現役を退いて久しい米長さんが勝てるわけがない。

【前提】
・将棋倶楽部24のレーティングと、http://homepage3.nifty.com/kishi/index.htmlに公開されているレーティング基準が同一のものとする。

【参考】
・ 24感想とか にてボンクラーズの開発者は、「プロとの比較という面では、24をやる前は(データ不十分のため断言はできないながら、推定するなら)プロ棋士の中位か下位相当くらいかな、と予想してました。ですが今は、上方修正せざるを得ないですね。24の結果を見るかぎり、並のプロは越えてる気がします。トッププロ(タイトルホルダークラス)と比べてどうか?は何とも言えないですが。トッププロも越えてる、という見方もネットではあるようですが、まあ対局してみないとわからないですか。」と述べている。

【追記】
米長さんのさわやか日記によると、ボンクラーズとの練習対戦において、対戦成績は悪いものの勝つこともあるらしい。おそらく、マシンスペックの問題だと思うが、本番の構成ではプレマッチと同様の惨敗となると思い切って予想する。

どの程度までが微量放射線と呼べるか?

以下の田母神氏の発言が気になったので調べてみた。
世田谷区で毎時2.7マイクロシーベルトの放射線が計測されたということを危険だとマスコミが煽っています。全く気にする必要はありません。その1万倍の放射線でも24時間、365日浴び続けても健康上有益なだけです。

毎時2.7マイクロシーベルトの1万倍は、27000マイクロシーベルト(=27ミリシーベルト)である。これを24時間365日浴びるとなると、年間で約24万ミリシーベルトとなる。これって結構大きい気がするんだけど、本当に大丈夫なんだろうか?

一時的に大量の全身被爆をすると死亡することはよく知られている。以下の中部電力の資料によると7000ミリシーベルトぐらいで100%死亡の域に入ってしまう。

先ほどの24万ミリシーベルトという値は、この100%死亡域よりもはるかに大きい値であるが、問題は、毎時2.7マイクロシーベルトが微量(低レベル)放射線か否かということである。

以前のエントリで書いたとおり、微量の放射線被爆であれば、体の免疫力が高まり、健康上有益になるという研究結果が発表されている。では、微量放射線被爆と大量被爆の境目はどのくらいにあるのだろうか?

調べてみると、以下のページにいろいろな研究者の意見がリストアップされている。

http://nangoku851.at.webry.info/201108/article_22.html

このページの下の方に、「毎時10ミリシーベルトまでは間違いなく問題なく(「パーフェクト」)、毎時100ミリシーベルトも大丈夫そうだ」という、研究者の主張がまとめられている。もちろんここで言う「問題ない」とは、「人体にとって有害どころか有益」という意味だ。

この主張は、前述の大量の放射線被爆のゲージチャートと整合性がとれているように思う。このゲージチャートの値を一時の大量被爆における影響として捉えると、このゲージの一番下の値以下は微量の被爆として考えてもよさそうだ。このゲージ上も毎時100ミリシーベルトでは「臨床症状が確認されていない」とある。

したがって、毎時100ミリシーベルトまでは微量放射線として考えてもよさそうだ。冒頭の田母神氏の発言もこの値の範囲内に収まっており、合理的なものといえるだろう。

微量放射線の影響に関する研究は思ったより進んでいた

いろいろ調べているうちにこれまで僕の主張している放射線影響理論は、「しきい値なし直線(LNT)仮説」と呼ばれるものであることがわかった。

以下の雑記記事では、微量放射線のマウス実験の結果を分析している。
電中研ニュース407号「解明すすむ微量放射線の影響」

この記事では僕の唱えるLNT仮説はリスクを過大評価した時代遅れの論理であると位置づけている。さらに、微量の放射線は、有害どころか寿命を延ばしたり、病気を防止する効果を持っているとの研究結果を実験データとともに明らかにしている。

微量の放射線は人体に 好影響をもたらすという、よく研究者がやり玉に挙げられているあの主張である。僕も正直、ここまでの研究結果が出ているとは思わなかった。

以下のチャートを見てほしい。「生体に影響のない領域」と「有害な領域」の間に「有効な領域」の青いエリアがあることが わかる。最初は、これは驚くべき結果だと思ったが、放射線をインフルエンザワクチンと同じようなものとして捉えてみると確かに合点がいく。微量のインフルエンザウィルスは、生体の防御反応を呼び起こし、抗体を生成する。それにより、ウィルスが次回侵入してきたときには臨戦態勢が整っており、感染を防ぐことができるというわけだ。

うーん、いや、そうなのか。深いな。

ところで、この研究結果について知っている人はどのくらいいるだろうか?


この資料を公開している放射線安全センターのサイトは一見の価値がある。

放射線安全センター自体は、LNT仮説を支持しない立ち位置であるが、以下のトピックスをみると、同様にLNT仮説を支持しない研究者がたくさんいることがわかる。
http://www.denken.or.jp/jp/ldrc/study/topics/20080604.html

この実験結果を見る限り、微量の放射線に限って言えば、彼らの主張どおりLNT仮説は当てはまらないんじゃないかと個人的に感じている。しばらくWatchしていきたい。

(追記)
本件に関しては、Open ブログ:微量放射線の影響  でも非常に細かく解説してある。興味がある人は見てほしい。

1ミリシーベルト基準の意味について逃げずにぶつかるとき

以下のブログには、1ミリシーベルトという現在の国の基準で1万人の人が被曝をすると、そのうち4人が癌で死ぬ、という記述がある。この記事の中では、20ミリシーベルトへの被爆限度引き上げ方針については批判しているにもかかわらず、もともとの1ミリシーベルト基準についての言及はされていない。

1万分の4のがんによる死のリスクは許容せざるを得ないという意見があるのであれば、逃げずに議論してほしい。

小出裕章が批判! 被曝限度「1mSv以内」を「1〜20mSv」へ変更提言。20mSv被曝で子供の癌死80倍の1万人中320人 10/5

以下のエントリでも書いたけど、安全と危険の閾値はかなりあいまいである。要は法律としての決めの問題であるが、国民感情を含めてうまい説明をできる人はいないのか?

一ミリシーベルトの意味

1ミリシーベルトの意味

現行の安全基準である年間1ミリシーベルトでも浴び続けると、癌になるリスクは上がる。統計上、安全ゾーンと危険ゾーンの明確な閾値はない。要は、どこまでのリスクを受け入れるかという話だ。内部統制の評価とよく似ている。リスクは0にはできない。

年間20ミリシーベルトの暫定基準を撤回しろといい続けている人たちは、1ミリシーベルトは許容しているのだろうか?

この手の議論をする際は、確率統計や社会学、法律学、心理学といった幅広い知識が必要だ。感情論だけで話をしてはいけない。

以下、http://onihutari.blog60.fc2.com/blog-entry-52.htmlからの引用である。

6 「安全基準」には科学的根拠がない:1ミリシーベルトでも人は死ぬ
→ 私たちは年間約100ミリレム(1ミリシーベルト)の自然放射能を大地や太陽から浴びている。しかしこの年間100ミリレム(1ミリシーベルト)という値は7年間その量を浴び続けると125人中1人が癌を発病する値である。
→ Nuclear Regulatory Commission(米原子力規制委員会)は何の科学的根拠もなく、一般人は自然放射能100ミリレム(1mSv)に加えて人工放射能も100ミリレム(1mSv)までは浴びられるといった限界値を作った。要するに年間200ミリレム(2mSv)まで安全だと言えるようにした。

また、http://blog.goo.ne.jp/tomorrow_2011/e/3be6266051be814bf5448f50834ae1b2によると
ウクライナのルギヌイ地区では1ミリシーベルトという安全基準を厳格に守っていますが、以下のような健康被害が出ているそうです。

  • 感染症の増加、長期化
  • ガンの第3期から4期にある人の平均余命が、胃がんで60ヶ月だったものが、1992年には8ヶ月に落ちている。肺ガンでは40ヶ月→8ヶ月→2.3ヶ月
  • 新生児の病気にかかる率や、先天性形成障害、精神神経的障害の増加
  • 平均余命に関して、1985から1990、1992年で男性の死期は15年近く短縮し、女性は5年から8年短縮している。
人体実験をしろというわけではないが、放射線被爆と健康被害についての因果関係をしらべるいい機会である。関係省庁、研究者におかれては、しっかりとした指標を長期間にわたって取得するシステムを構築してほしい。後世において、重要な参考値のひとつとなるであろう。
1ミリシーベルトの呪縛 (エネルギーフォーラム新書)
森谷 正規
エネルギーフォーラム
売り上げランキング: 494,035

将棋タイトル戦で3連敗後に4連勝するケースは稀と言えるか統計学的検証

前から気になってしょうがなかったので、計算してみる。

将棋のタイトル戦(7番勝負のもの)に関して、3連敗後の4連勝での逆転勝ちが非常に少ないといわれているが、本当にそうなのか数学的に証明してみたい。

以下のブログによるとこれまで194局中2局がそのケースに該当するとのこと。そして7番勝負のタイトルマッチで3連敗4連勝が発生する理論上の確率は、1/64(≒0.0156)である。3連敗4連勝は理論上の確率と比べて明らかに少ない(起こりにくい)と言えるだろうか?

ファイナンスコーヒー – 王位戦第7局
http://financecoffee.skr.jp/archives/1057

ここでは、z検定を用いて、将棋タイトル戦で3連敗4連勝が起こりにくいかを有意水準0.05で統計的に検定する。仮定として、挑戦者とタイトル保持者の力は互角(両者の勝つ確率は0.5)とする。

① 検定仮説 P =0.0156
② 対立仮説 P < 0.0156
③ 調査結果 n=194, p= 2/194(≒0.0103), P0 = 0.0156
④ 統計量 W=-0.5957 (z検定の公式より)
⑤ 棄却域 α=0.05, 片側検定 よってz(α)=z(0.05)=1.64
⑥ 比較 |w|<1.64なので検定仮説を棄却できない
⑦ 結論 有意水準0.05で将棋タイトル戦7番勝負で3連敗後4連勝するケースは理論値の0.0156よりも低いとはいえない。

たまたまそういうケースが少ないということか。あー、少しすっきりした。

確率論的に見た第22期竜王戦

今回は渡辺竜王の4連勝だった。内容的にも圧勝で、まったく森内九段を寄せ付けた感がない。こないだの羽生-山崎の王座戦を思い出す。プロ同士の将棋でこれぐらい差が出るのは珍しいと思うが、確率的にどうか検証してみる。
 
棋士レーティングより、本日時点での渡辺竜王の森内九段に対する期待勝率は、56%。
 
したがって、渡辺竜王が4連勝する確率は、0.56^4 = 0.098345となり、10%程度は4連勝の確率があったことがわかる。

ちなみに、渡辺竜王が防衛する確率はどうなるか?
 
先に4勝する確率なので、単純な組み合わせとも行かず、めんどくさいが、ひとつずつ出してみた。
 
4勝1敗のパターン:4通り
×
×
×
×
 
4勝2敗のパターン:10通り
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
 
4勝3敗のパターン:20通り
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
 
○=0.56, ×=0.44として、それぞれのパターンの発生確率を求めると、
4勝1敗≒0.17
4勝2敗≒0.19
4勝3敗≒0.17
 
となり、全部合計して約0.63。
 
したがって、現在のレーティングから判断すると渡辺竜王の防衛確率が6割以上あったことになる。
もっといい計算方法ないかなあ?
 
 
 
PS.しかし、事前の研究熱心さで有名な森内九段が見事に作戦負けしてるからなー。渡辺さんの強さばかり目立ったシリーズだった。
 

Bonanzaと大数の法則

ボナンザメソッド(ボナメソ)には理論上はっきりとした限界がある。
 
プロの棋譜を集めれば集めるほど、大数の法則により平均的なプロ棋士の棋力に近づくからだ。しかも、今のボナンザは全幅探索を可能とするために限定的なパラメータしか入力していないから、その分総合的な判断のできる人間が上回るだろう。また、ボナメソには学習データの少ない局面では強さを発揮できないという弱点もある。しかし、指し間違いが少ないというコンピュータならではの利点もある。その分を相殺しても、ボナメソではプロ棋士の下位レベルぐらいに到達するのが限界(※)と見ている。
 
おそらく作者がソースコードを公開したのもそういった限界を感じてのことではないだろうか?
 
※もちろん、これは条件によって異なる。早指しになればなるほどBonanzaのレベルはプロの上位に近づく。
 
 

プロ棋士をも打ち負かす最強将棋登場!サクセス 最強将棋 BONANZA 【PSP】